214 research outputs found

    Epitaxial Frustration in Deposited Packings of Rigid Disks and Spheres

    Full text link
    We use numerical simulation to investigate and analyze the way that rigid disks and spheres arrange themselves when compressed next to incommensurate substrates. For disks, a movable set is pressed into a jammed state against an ordered fixed line of larger disks, where the diameter ratio of movable to fixed disks is 0.8. The corresponding diameter ratio for the sphere simulations is 0.7, where the fixed substrate has the structure of a (001) plane of a face-centered cubic array. Results obtained for both disks and spheres exhibit various forms of density-reducing packing frustration next to the incommensurate substrate, including some cases displaying disorder that extends far from the substrate. The disk system calculations strongly suggest that the most efficient (highest density) packings involve configurations that are periodic in the lateral direction parallel to the substrate, with substantial geometric disruption only occurring near the substrate. Some evidence has also emerged suggesting that for the sphere systems a corresponding structure doubly periodic in the lateral directions would yield the highest packing density; however all of the sphere simulations completed thus far produced some residual "bulk" disorder not obviously resulting from substrate mismatch. In view of the fact that the cases studied here represent only a small subset of all that eventually deserve attention, we end with discussion of the directions in which first extensions of the present simulations might profitably be pursued.Comment: 28 pages, 14 figures; typos fixed; a sentence added to 4th paragraph of sect 5 in responce to a referee's comment

    The Multimode Resource Constrained Project Scheduling Problem for Repetitive Activities in Construction Projects

    Full text link
    [EN] In construction projects, resource availability might limit the implementation of ideal schedules. Especially, when repetitive activities are involved, traditional resource¿constrained project scheduling problem (RCPSP) models fail to allocate the resource consumption in an efficient manner. Besides, actual models only provide local optimal solutions and do not incorporate activity acceleration routines. To fulfill this gap, partially, a mathematical optimization model, the multimode RCPSP for repetitive activities in construction projects, is proposed and solved to optimality; it takes into account acceleration routines under real construction scenarios using spreadsheets. The article shows a complete computational experimentation over a real construction project, considering several scenarios of resource availabilities and continuity conditions. The model allows analyzing the resources efficiency indexes comparing them to resource consumptions, continuity of activities, and objective functions that reveal that fragmented activities do not provide better resource efficiency outcomes.This research was partially supported by the FAPA program of Universidad de Los Andes, Colombia (code P14.246922.005/01). The authors would also like to thank the research group of Construction Engineering and Management (INgeco) at Universidad de los Andes.García-Nieves, J.; Ponz-Tienda, JL.; Salcedo-Bernal, A.; Pellicer Armiñana, E. (2018). The Multimode Resource Constrained Project Scheduling Problem for Repetitive Activities in Construction Projects. Computer-Aided Civil and Infrastructure Engineering. 33(8):655-671. https://doi.org/10.1111/mice.12356S65567133

    A cosmological dust model with extended f(chi) gravity

    Full text link
    Introducing a fundamental constant of nature with dimensions of acceleration into the theory of gravity makes it possible to extend gravity in a very consistent manner. At the non-relativistic level a MOND-like theory with a modification in the force sector is obtained, which is the limit of a very general metric relativistic theory of gravity. Since the mass and length scales involved in the dynamics of the whole universe require small accelerations of the order of Milgrom's acceleration constant a_0, it turns out that the relativistic theory of gravity can be used to explain the expansion of the universe. In this work it is explained how to use that relativistic theory of gravity in such a way that the overall large-scale dynamics of the universe can be treated in a pure metric approach without the need to introduce dark matter and/or dark energy components.Comment: 7 pages, 1 figure. Accepted for publication in the European Physical Journal

    The hydration state of HO^-(aq)

    Full text link
    The HO^-(aq) ion participates in myriad aqueous phase chemical processes of biological and chemical interest. A molecularly valid description of its hydration state, currently poorly understood, is a natural prerequisite to modeling chemical transformations involving HO^-(aq). Here it is shown that the statistical mechanical quasi-chemical theory of solutions predicts that HO[H2O]3\mathrm{HO\cdot[H_2O]_3{}^-} is the dominant inner shell coordination structure for HO^-(aq) under standard conditions. Experimental observations and other theoretical calculations are adduced to support this conclusion. Hydration free energies of neutral combinations of simple cations with HO^-(aq) are evaluated and agree well with experimental values.Comment: 10 pages, 1 figur

    Structural transitions in granular packs: statistical mechanics and statistical geometry investigations

    Get PDF
    We investigate equal spheres packings generated from several experiments and from a large number of different numerical simulations. The structural organization of these disordered packings is studied in terms of the network of common neighbours. This geometrical analysis reveals sharp changes in the network's clustering occurring at the packing fractions (fraction of volume occupied by the spheres respect to the total volume, ρ\rho) corresponding to the so called Random Loose Packing limit (RLP, ρ0.555\rho \sim 0.555) and Random Close Packing limit (RCP, ρ0.645\rho \sim 0.645). At these packing fractions we also observe abrupt changes in the fluctuations of the portion of free volume around each sphere. We analyze such fluctuations by means of a statistical mechanics approach and we show that these anomalies are associated to sharp variations in a generalized thermodynamical variable which is the analogous for these a-thermal systems to the specific heat in thermal systems.Comment: 7 pages, 6 figure

    Random close packing of granular matter

    Full text link
    We propose an interpretation of the random close packing of granular materials as a phase transition, and discuss the possibility of experimental verification.Comment: 6 page

    Gravitational anomalies signaling the breakdown of classical gravity

    Full text link
    Recent observations for three types of astrophysical systems severely challenge the GR plus dark matter scenario, showing a phenomenology which is what modified gravity theories predict. Stellar kinematics in the outskirts of globular clusters show the appearance of MOND type dynamics on crossing the a0a_{0} threshold. Analysis shows a ``Tully-Fisher'' relation in these systems, a scaling of dispersion velocities with the fourth root of their masses. Secondly, an anomaly has been found at the unexpected scales of wide binaries in the solar neighbourhood. Binary orbital velocities cease to fall along Keplerian expectations, and settle at a constant value, exactly on crossing the a0a_{0} threshold. Finally, the inferred infall velocity of the bullet cluster is inconsistent with the standard cosmological scenario, where much smaller limit encounter velocities appear. This stems from the escape velocity limit present in standard gravity; the ``bullet'' should not hit the ``target'' at more than the escape velocity of the joint system, as it very clearly did. These results are consistent with extended gravity, but would require rather contrived explanations under GR, each. Thus, observations now put us in a situation where modifications to gravity at low acceleration scales cease to be a matter of choice, to now become inevitable.Comment: 10 pages, 5 figures, Astrophysics and Space Science Proceedings 38, 4

    Theory of a Human Ecology of Communication: empirical evidence of the Internet consumption ecosystem in Ecuador

    Get PDF
    Since 2010 we have been analyzing Internet consumption indicators in Ecuador, characterized by the rapid growth in relation to nearby countries. This phenomenon, that transcends the statistical explanation, has been conducted in more than ten research reports published by the Research Center of Communication and Public Opinion (CICOP) of the Faculty of Communication at the Universidad de Los Hemisferios, who leads in the country the World Internet Project -WIP- project. This "transgression" suggests an interdisciplinary explanation, according to the complexity of human social ecosystem, to understand "how" it is possible to discern political and economic different and specific behaviors in social communication, according to sociodemographic characteristics, in a society like Ecuador, where the classic paradigms of communication theory breaks. In this sense we present the theoretical proposal entitled "Human Ecology of Communication" from the Internet consumption research conducted during the years 2010-2014 in Ecuador

    Annihilation vs. Decay: Constraining dark matter properties from a gamma-ray detection

    Full text link
    Most proposed dark matter candidates are stable and are produced thermally in the early Universe. However, there is also the possibility of unstable (but long-lived) dark matter, produced thermally or otherwise. We propose a strategy to distinguish between dark matter annihilation and/or decay in the case that a clear signal is detected in gamma-ray observations of Milky Way dwarf spheroidal galaxies with gamma-ray experiments. The sole measurement of the energy spectrum of an indirect signal would render the discrimination between these cases impossible. We show that by examining the dependence of the intensity and energy spectrum on the angular distribution of the emission, the origin could be identified as decay, annihilation, or both. In addition, once the type of signal is established, we show how these measurements could help to extract information about the dark matter properties, including mass, annihilation cross section, lifetime, dominant annihilation and decay channels, and the presence of substructure. Although an application of the approach presented here would likely be feasible with current experiments only for very optimistic dark matter scenarios, the improved sensitivity of upcoming experiments could enable this technique to be used to study a wider range of dark matter models.Comment: 29 pp, 8 figs; replaced to match published version (minor changes and some new references

    Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity

    Full text link
    We analyse the effect of a continuous spread of particle lengths on the phase behavior of rodlike particles, using the Onsager theory of hard rods. Our aim is to establish whether ``unusual'' effects such as isotropic-nematic-nematic (I-N-N) phase separation can occur even for length distributions with a single peak. We focus on the onset of I-N coexistence. For a log-normal distribution we find that a finite upper cutoff on rod lengths is required to make this problem well-posed. The cloud curve, which tracks the density at the onset of I-N coexistence as a function of the width of the length distribution, exhibits a kink; this demonstrates that the phase diagram must contain a three-phase I-N-N region. Theoretical analysis shows that in the limit of large cutoff the cloud point density actually converges to zero, so that phase separation results at any nonzero density; this conclusion applies to all length distributions with fatter-than-exponentail tails. Finally we consider the case of a Schulz distribution, with its exponential tail. Surprisingly, even here the long rods (and hence the cutoff) can dominate the phase behaviour, and a kink in the cloud curve and I-N-N coexistence again result. Theory establishes that there is a nonzero threshold for the width of the length distribution above which these long rod effects occur, and shows that the cloud and shadow curves approach nonzero limits for large cutoff, both in good agreement with the numerical results.Comment: 20 pages, 13 figure
    corecore